

What makes a <u>successful</u> **Measurement Program?** - a case study **AEMES** Conference Madrid Presented by: Pam Morris (CEO) TOTAL METRICS

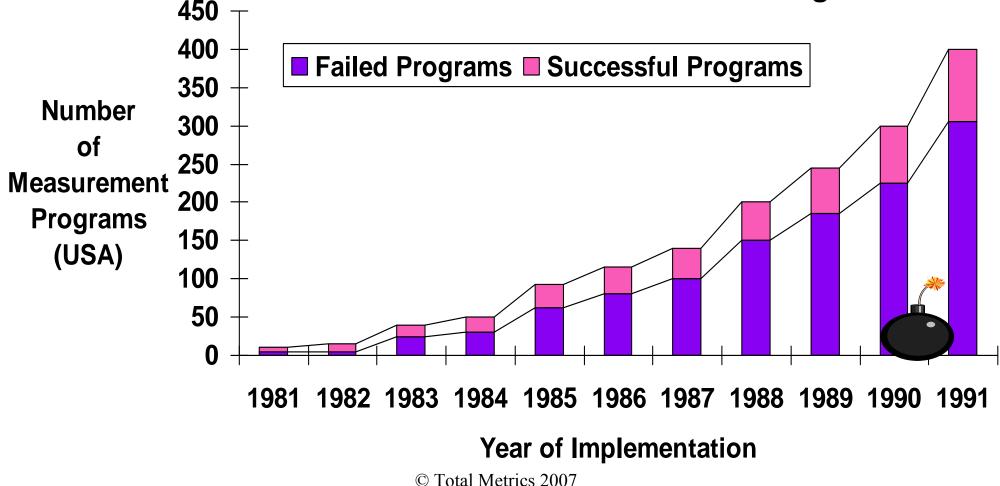
October, 2007

Presenter - Pam Morris

CEO - TOTAL METRICS

Consulting, Training Tools and Standards • Certified IFPUG (CFPS, CSMS - 3), COSMIC-FFP

Committee Member of:


- o Australian Software Metrics Association (ASMA) Executive (1991)
- o ISBSG Executive (2000)
- o International Function Point User Group (IFPUG) (1993 2000)
- o COSMIC-FFP Core Committee (1997)
- o International Standards Organisation (ISO) WG12 (1993 2007)
- o Standards Australia IT15 (1993)

Has anything changed?

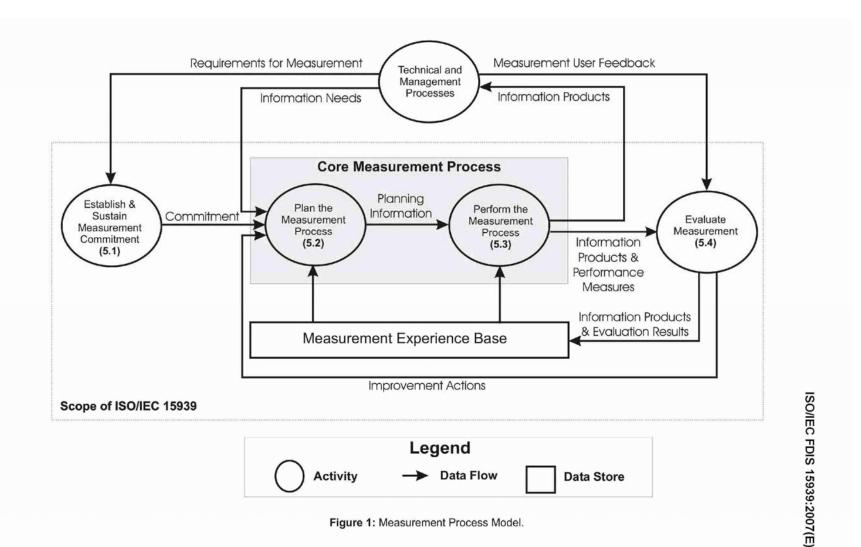
**80% of all measurement programs fail **

Source : Howard Ruben Associates 1994

Risk of Failure of Measurement Programs

Overview of Topics

Background
Measurement Process
Lessons Learned
Critical Success Factors


Background

Australian Government Department

- Large Legacy Application ~14,000 fps
- ♦ Mid-range Cool:Gen, Java
- ♦ 60 developers

 Initial Objective : Verify improvements gained by Re-factoring activity

Measurement Process – ISO/IEC 15939:2007

9

1. Establish and Sustain Measurement and Management Commitment

Management had clear stated objectives

- ♦ 4 Year commitment
- Buy in from CIO to Project Team Leaders

2. Plan the Measurement Process

Workshops to agree:

- ≻KRA, KPIs
- ≻Report Templates
- Data Collection Templates
- ≻Tools

Metrics Consultant Resource:

- ♦ 1 consultant
- Effort = 22 days
- Duration = 1 Calendar Month

Client Resource:

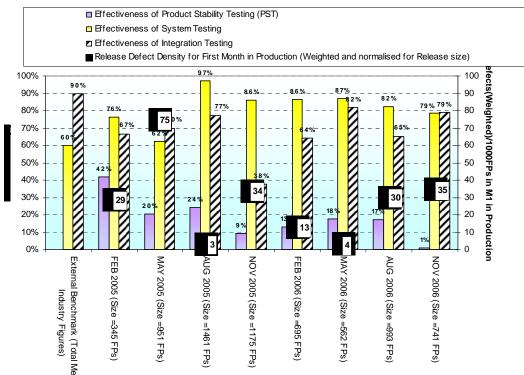
- ♦ 4 Management
- Effort = 1 ¹/₂ day workshops + Review 2 Drafts
- Duration = 1 Calendar Month

Reporting Structures

	Report			Target Audience				
No.	Name	Key Result Area	Report Level	IT Steering Committee	TeamLeaders Project Board	QC Mngment		
Main Repo	orts							
1	ARLS Productivity and Quality	Cost & Quality	Release / Cumulative	\checkmark	\checkmark			
2	ARLS Productivity and Release Size	Cost	Release / Cumulative	\checkmark	\checkmark			
3	ARLS Release Quality and Testing Effectiveness	Quality	Release / Cumulative	\checkmark	√	\checkmark		
4	ARLS Baseline Growth	Cost (Investment)	Application / Cumulative	\checkmark	√			
Supplemen	itary Reports							
5	ARLS Project Productivity and Quality	Cost & Quality	Project / 6 month snapshot		\checkmark			
6	ARLS Project Quality and Testing Effectiveness	Quality	Project / 6 month snapshot		\checkmark			
7	ARLS Analysis of Defects – by Severity	Quality	Release / 6 month snapshot		\checkmark	\checkmark		
8	ARLS Analysis of Defects – by Source of Origin	Quality	Release / 6 month snapshot		\checkmark			
9	ARLS Development Stage Analysis	Quality / Cost	Project / 6 month snapshot		\checkmark			
10	ARLS Time Spent in Testing	Cost / Quality	Release / 6 month snapshot		\checkmark	V		
11	ARLS Rework Analysis - Summary	Cost / Quality	Release / Cumulative		\checkmark	\checkmark		
12	ARLS Rework Analysis - Detail	Cost / Quality	Project / 6 month snapshot		\checkmark	\checkmark		
13	ARLS Maintenance Intensity	Cost [©] Total Metrics 2	007 Application Cumulative		\checkmark	\checkmark		

Report Templates

Each Report had agreed:


> Purpose

- Target Audience
- Frequency / Level
- Rules for Calculation
- Description :
 - * how to read the report
 - * What it was demonstrating
 - * the types of decisions it would support

Report Templates

ARLS Release Test Effectiveness

Note: Testing Effectiveness compares the number of defects found at a particular stage of testing against how many defects were actually le

Eg Description

 This report shows the overall quality of the ARLS development process since the degree to which defects are released into production are a good indication of the maturity of software development_{Total Metrics 2007}

Data Collection Templates

♦ 5 Base Measures and Tools Agreed:

- Functional Size (fps)
 - * IFPUG 4.2
 - * SCOPE Project Sizing SoftwareTM
- Effort (hours)
 - * ISBSG Definitions Level 2
 - * NIKUTM
- Defects (number)
 - * origin, severity
 - * ISBSG Customised
 - * Test Track Pro TM
- Duration (Calendar Days)
 - * ISBSG Definitions
 - * *NIKU*TM Rules for Calculation
- Full-time Equivalents (people)
 - * ISBSG Definitions

3. Perform Measurement Process

Establish Baseline

Metrics Consultant Resource:

- ♦ 1 consultant
- Effort = 33 days
- Duration = 2 Calendar Months

Client Resource:

- ♦ 8 application experts
- Effort = $\sim 1/2$ day each
- Duration = 2 Calendar Months

Ongoing Measurement

➤~ 6 projects every 3 month Release (846fps)

Metrics Consultant Resource:

- ♦ 1 consultant
- Effort = 5 days
- Duration = 1 Calendar week

Client Resource:

- Project Teams
- Effort = ?
- Duration = 3 Calendar Months

3. Perform Measurement Process

Client Resource:

♦ 1 Metrics Analyst

Effort = 10 days

◆ Analysis of the Results – 52 KPIs

Metrics Consultant Resource:

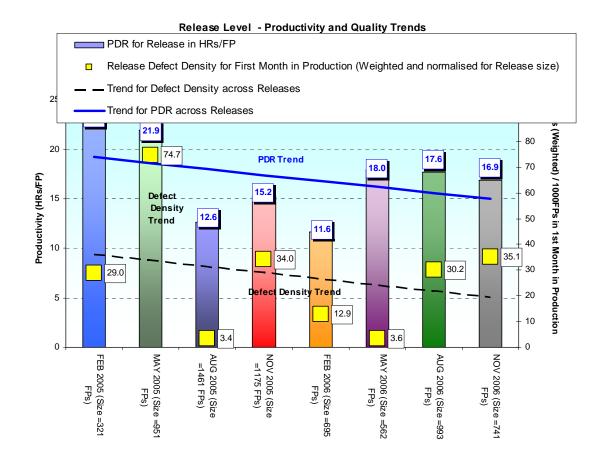
- ♦ 1 consultant
- Effort = 5 days
- Duration = 1 Calendar week

Reporting the Results

≻Benchmark Report (6 monthly) – 100 pages

Metrics Consultant Resource:

- ♦ 1 consultant
- Effort = 10 15 days
- Duration = 3 Calendar weeks


Client Resource:

Management Reviews

Duration = 1 Calendar Month

- Effort = 1 days
- Duration = 1 Calendar day

4. Feedback into Technical and Management Processes

4. Feedback into Technical and Management Processes

Product Quality

➢Observations

- * Most defects originated in Build phase
- * Testing was introducing defects
- * Testing efficiency was below industry standard
- * Time spent early life cycle was below industry standard
- * Large variability between projects

Product Quality

Improvements Introduced

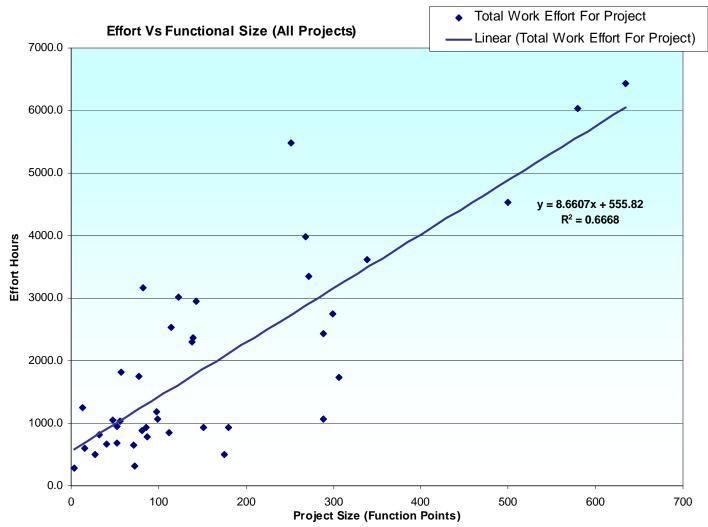
- * Peer Reviews
- * Formal Unit Test process
- * Focus on System Testing
- * Formal Requirements Management and Design Process

4. Feedback into Technical and Management Processes

Productivity


➢Observations

- * Less productive than Industry
- * Small projects (<100fps):
 - have lower productivity
 - Small projects behave unpredictably.
- * Larger Projects (>250 fps) took longer users optimum 12 months
- * FP size gave accurate early life cycle estimates
- * Large variability between projects


Less Productive than Industry Median

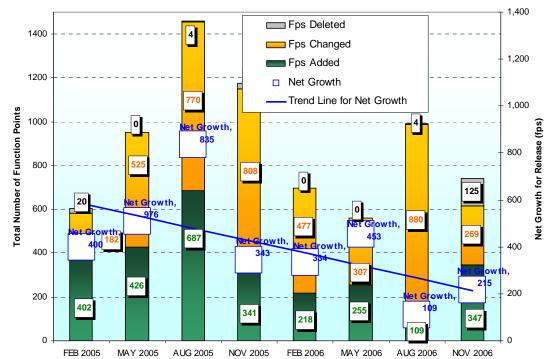
	Project Median PDR Comparison to Industry by Release							Industry Values (R10 - 2007)			
Position	Feb-05	May-05	Aug-05	Nov-05	Feb-06	May-06	Aug-06	Nov-06	Cool:GEN	4 GL P r o j e c t s	Case T o I s
Minimum value									2.7	0.9	1.8
Top 25% of productivity					7.5				6.8	3.7	6.5
									0.0	0.1	0.0
Median rate		12.2	12.1				10.1		9.1	6.7	14.4
Bottom 25% of Productivity	21.1			16.8		18.1		23.4	12.5	12.4	30.0
Maximum Value									56.1	40.5	80.7
Number in sample	2	4	8	6	7	7	5	4	28	89	81

Small Project are more unpredictable

FP Size has good correlation with effort

Estimated FP Size Produced Accurate Effort Estimates

20000 19000 18000 17000 16000 15000 NOV 2005 AUG 2006 14000 14.702 11,862 13000 **NOV 2006 MAY 2006** 12000 10,366 **Release Effort Hours** 8,426 11000 (Development) 10000 9000 8000 7000 FEB 2006 6000 5.969 5000 Actual Effort (excludes Release Management) (+10% error bars) 4000 3000 2000 -Predicted Effort hours using DRIVES (Release Level) median PDR 1000 0 3rd Benchmark 4th Benchmark


ARLS Release Effort Estimates Vs Actual Release (Project) Effort in Hours

© Total Metrics 2007

2nd Benchmark

Only 33% of Projects delivering New functionality to the Business and Net Growth is decreasing

Release Functional Impact Analysis - Summary

Nett Grow th For Release = (Added Fps)+ (Changed After size - Changed Before Size) - (Deleted)

5. Evaluate Measurement

◆ Metrics Review Workshop – 2 hours

Metrics Consultant Resource:

- ♦ 1 consultant
- Effort = 2 hours
- Duration = 1 Calendar day

Implementing Changes

Data Collection and Recording

Metrics Consultant Resource:

- ♦ 1 consultant
- Effort = 3 days
- Duration = 1 Calendar week

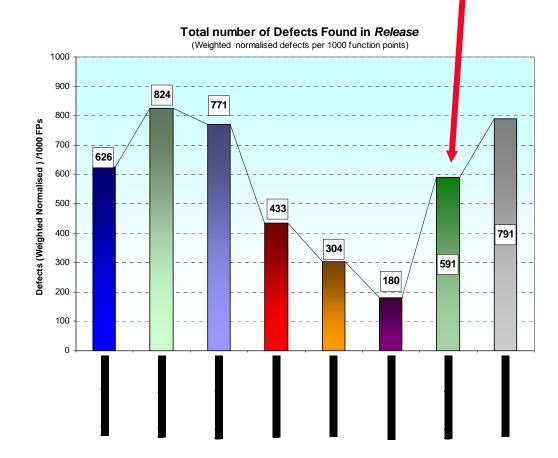
Client Resource:

- ♦ 5 Management team
- Effort = 1 day
- Duration = 1 Calendar day

Client Resource:

- Metrics Analyst + Training
- Effort = 5 days
- Duration = 1 Calendar month

Changes Introduced


Defects

All defects now captured – early life cycle
 Unit Testing defects now captured accurately
 Defects now allocated correctly to phase
 4th Benchmark more defects being reported
 Effort

➢QC Effort now allocated to the project not the Release overhead.


4th Benchmark higher Project PDR being reported

More Defects being Reported

Lower Project Productivity (higher PDR) Reported

Comparison ALL PROJECT PDR to Industry Medians

Critical Success Factors

Formal Process

- Clear Stated objectives
- ➢ Vision − long term commitment
- >Adequate Budget and Resources
- >Used skilled Metrics personnel
- ➤Used specialist tools for FPA and outsourced counting

Management

- ➢Realistic expectations
- >All levels interested, results are shared
- >Acts on the results
- ≻Open to change
- >Sees bad news as an opportunity
- >Measurement is viewed as important

News Flash - May 2007 True Measure of Success!

Other IT Areas want what they have got!
8 other Applications want to be involved and get what the ARLS team are getting!

At Last Success !

Total Metrics Pty Ltd 667 Burke Road Camberwell Victoria 3124 Australia Phone +613 9882 7611 Fax +613 9882 7633 admin@Totalmetrics.com

www.totalmetrics.com