ISBSG data in Industry

Present and Future

Ton Dekkers

Shell Information Technology International Head CoE Estimating & Metrics

International Software Benchmarking Standards Group President

Do you like to live dangerously?

The good news

Only 29% of IT-projects 2004 within time and budget (Chaos Report)

Source: Standish Group – Chaos Report

m

File Title

Six most common causes

- Lack of user involvement
- Incomplete requirements
- Changing requirements
- Lack of executive support
- Developer incompetence
- Unrealistic expectations

Impact of poor estimates

- Missed delivery dates Loss of business / position
- Failing projects Resources wasted
- Cancelled projects Money spent, resources wasted - no business value
- Business case [for IT investment] Invalidated

Trends in IT Services – Customer View

- IT should be beneficial to business
- The organisation should focus on core business
 - IT Risk to supplier / IT Risk shared with supplier
 - (Out)Sourcing
- Cost reduction
 - Value for money
 - Transparent proposal
- Standardisation
 - Packages
 - Process
- Customer Satisfaction
 - On time, on budget with the agreed functionality AND quality

Trends in IT Services – Supplier View

- IT services should be profitable
- The organisation should be compelling
 - Prepared to take / to share the customer risks
 - Profiling as an (Out)Sourcing partner / party
- Cost effective
 - Value for money
 - Competitive proposal
- Standardisation
 - Process & Procedures (Factory)
 - Risk Management
- Customer Satisfaction
 - On time, on budget with the agreed functionality AND quality

The solution !!!

The customer should ask for a contract based on a price per unit.

The supplier should offer contracts based on a price per unit. This requires

- Functional "excellence".
- Good estimates / right expectations.
- International accepted units.
- Historical data.
- Benchmark standards.

Functional Excellence

Provide the necessary processes, standards and tools such that the IT Function can deliver projects on time, within budget and to business expectations consistently and in a sustainable manner in a multisource environment.

Create an organisational capability which will be deemed (top quartile) in Project Delivery by external benchmarks.

Need for an Estimation Process

- Consistency
 - Controllability
 - Common language
- Transparency
 - Understanding the impact of cost drivers
- Objectivity
 - Fact based, not 'intuition' based
 - Models, methods
 - Historical database, benchmark

Information Technology

10

File Title

Models

Models are not the "end-game", no "silver bullet"

but can help create a common language

- They are only a starting point for discussions on various elements of application support cost management
- They should be refreshed for benchmarks, newly available measurement data, and pragmatic considerations
- Models serve as a platform on a healthy exchange of ideas on the impact of cost drivers
- They also serve as a tool to set the cost expectations on the demand side

Information Technology

File Title

Information Technology

12

File Title

Input - Process - Output

Information Technology

13

File Title

Enhanced Measurement Model

Information Technology

Methods

- COSMIC Full Functions
 - Measurement Manual V3.0 (September 2007) [ISO]
 - Application Guide V1.0 (December 2005)
 - COSMIC/Sogeti Maintenance Sizing (2004)
- Function Points
 - IFPUG Counting Practices V4.2 (2004) [ISO]
 - NESMA Counting Practices V.2.2 (2005)
 - (NESMA)/Sogeti Maintenance Sizing (1996 / 1992)
- Use Case Point
 - IBM / Rational

15

Information Technology

[ISO]

Median Project Delivery Rates

Information Technology

16

File Title

ISBSG members

Information Technology

File Title

Connections

ISBSG Repositories

- New Development & Enhancement Data from projects focussing on development of custom build software R10 (01-2007), > 4,000 projects
 - single user: CD version, limited detailed data per project
 - corporate version: 1 to 5 users (basis), more data fields, every half-year an update
- Run & Maintain (PILOT)
 Data from application focussing effort and cost to keep the application
 operational
 R0 (2007), < 140 projects
 corporate version: 1 to 5 users (basis), more data fields</p>
- Business Application Packages (under construction) Data from projects focussing on a acquisition and implementation of packages
- Testing (under construction)
 Data of the test activity as part of the life cycle or as dedicated activity

 Infor(faction/Technology

File Title

Example Project

Variables	Expectations
Size	540 fp
Domain	Business
Language	Cobol (3GL)
Platform	Mainframe
Constraint s	€ 1,000,000 10 Months

20

Reality Checker

ISBSG Estimation Reality Checker V3.0 -Help 30000 ÷ Project Size (Function Points) 540 25000-Select Project Development Characteristics: Platform Language Type 20000 CAL CAL C All 0 Main Frame G 3GL New Development C ● Mid-Range C 4GL Re-development C 15000-Enhancement C PC C ApG н 0 u 10000 80% Confidence Interval -5000-Π 500 1000 1500 2000 n. Size (Function Points) Regression: Dependent Variable = C x (Function Points) Statistics Graph Dependent Variable Estimate Upper N C Ε -Log/Curv-Lower C Project Work Effort PWE (hours) 54 2235 6238 30,46 0,846 17408 C Elapsed Time (Months) 49 0,475 0,444 3,071 7,787 19,74 Project Delivery Rate (hours/FP) 54 32,24 C 30,46 -0,154 4,139 11,55 C Speed of Delivery (FPs/Month) 49 0,556 69,35 175,8 2,104 27,35

Reality Checker

Variables	Expectations	Reality Checker
Size	540 fp	540 fp
Domain	Business	_
Language	Cobol (3GL)	3 GL
Platform	Midrange	Midrange
Constraint s	€ 1,000,000 1,741,000	€ 624,000 -
	10 Months	7.8 - 19.7 Months

10/03/07

22

Reality Checker (online)

The reality is that, compared to projects that match yours in the ISBSG Repository

72 % were delivered within your expected effort 30,5 % were delivered within your expected elapsed duration what do I do now?

It's better to be a winner!

